Tentamen Kansrekening – Open book

Friday 7 July 2006

1. Denote by X the number of fixed points of a random permutation of n objects.

Compute E(X), the variance, and $E(X^3)$!

Hint: Use computations with indicator functions!

Solution: Write $X = \sum_{i=1}^{n} 1_{A_i}$ where A_i is the event that *i* is a fixed point.

We have for the probabilities

$$P(A_1) = \frac{1}{n}$$

$$P(A_1 \cap A_2) = \frac{1}{n(n-1)}$$

$$P(A_1 \cap A_2 \cap A_3) = \frac{1}{n(n-1)(n-2)}$$

So we get for the moments

$$E(X) = nE(1_{A_1}) = 1$$

and

$$E(X^{2}) = (n^{2} - n)P(A_{1} \cap A_{2}) + nP(A_{1}) = 2$$

So the variance is 1. Finally,

$$E(X^3) = n(n-1)(n-2)P(A_1 \cap A_2 \cap A_3) + 3n(n-1)P(A_1 \cap A_2) + nP(A_1)$$

= 1 + 3 + 1 = 5

Note the 3n(n-1) in the second term on the r.h.s. We can check the prefactors when we realize that $n(n-1)(n-2) + 3n(n-1) + n = n^3$. This is clear because they account for all possible choices of three indices between 1 and n.

2. Suppose that A and B are two events with $P(A) = \frac{3}{4}$ and $P(B) = \frac{1}{3}$. Show that always the inequality $\frac{1}{12} \leq P(A \cap B) \leq \frac{1}{3}$ holds

Solution: The r.h.s. is clear by considering B. The l.h.s. can be seen by

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) \ge P(A) + P(B) - 1$$

substituting the explicit numbers.

- 3. Be N a random variable that is distributed according to Poisson with parameter λ .
 - a) Compute the exponential moment generating function $E(e^{tN})$. **Solution:** well known from lecture and book, $E(e^{tN}) = \exp \lambda(e^t - 1)$ b) Now take a sequence of i.i.d. random Normal variables with expected value μ and variance σ^2 and show that $E(e^{tX_i}) = e^{\frac{t^2\sigma^2}{2} + t\mu}$

Next we define the random variable $S := \sum_{i=1}^{N} X_i$, where the random variables N and X_i are as above.

c) Compute the exponential moment generating function $E(e^{tS})$! Solution:

$$E(e^{tN}) = \sum_{n=0}^{\infty} P(N=n)E(e^{t\sum_{i=1}^{n} X_i})$$
$$= e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} E(e^{tX_1})^n$$
$$= \exp \lambda (e^{\frac{t^2\sigma^2}{2} + t\mu} - 1)$$

d) Compute E(S) and the variance of S!

Hint for d): Use c)! However, if you don't like c), you can also avoid it in the computation

 $\begin{aligned} & \textbf{Solution:} \quad E(S) = \lambda \mu \\ & E(S^2) = \lambda^2 \mu^2 + \lambda (\sigma^2 + \mu^2) \\ & E(S^2) - E(S)^2 = \lambda (\sigma^2 + \mu^2) \end{aligned}$

One can avoid part c) in the computation, if you use the formula for the expected value and variance of a sum with a random number of terms that was treated in the exercises.

4. Be X an exponential random variable with parameter 1.

(a) Compute the density of $\log X$

Solution: For the distribution function we have $P(\log X \le x) = 1 - e^{-e^x}$.

Taking derivatives gives the density $e^{-e^x}e^x$.

Be Y another exponential random variable with parameter 1, independent of X

(b) Compute the joint density of the random vector $(X, \frac{Y}{X+Y})$.

Hint: Use the multidimensional transformation formula, and note that $\frac{Y}{X+Y}$ takes values only in the interval [0, 1]

Solution: Put u = x and $v = \frac{y}{x+y}$. Then the inverse transformation is given by x = u and $y = \frac{vu}{1-v}$. The functional determinant is given by $\frac{u}{(1-v)^2}$.

So the joint density is

$$\exp(-\frac{u}{1-v})\frac{u}{(1-v)^2}$$

for $0 < u < \infty$ and 0 < v < 1.

(c) Compute the density of $\frac{Y}{X+Y}$.

Solution: as we see from (b) by integration over u it is uniform on the interval [0, 1]. More precisely, the marginal distribution on the v-variable is obtained by integration over u. Making a substitution $\tilde{u} = \frac{u}{1-v}$ this integral becomes

$$\int_{0}^{\infty} \exp(-\frac{u}{1-v}) \frac{u}{(1-v)^{2}} du = \int_{0}^{\infty} \exp(-\tilde{u}) \tilde{u} d\tilde{u} = 1$$

That the last integral is 1 can be seen without looking at computations or tables from the fact that it has become v-independent because the remaining quantity must be a probability density on [0, 1].

5. Be X_n a sequence of independent geometric random variables with *n*-dependent parameter $p_n = 1 - e^{-n}$. (We use notations according to the table in KaDe page 251, meetkundig)

Use the Borel-Cantelli Lemma to show that X_n converges to 0 almost surely! Is the assumption of independence really necessary to reach this conclusion?

Solution: That X_n converges to zero almost surely means equivalently that only finitely many non-zeros occur. Now, this is implied by by the convergence of the series

$$\sum_{n=1}^{\infty} P(X_n \neq 0) = \sum_{n=1}^{\infty} (1 - p_n) = \sum_{n=1}^{\infty} e^{-n} < \infty$$

For this conclusion we don't need the independence.