
Tentamen Kansrekening – Open book

Friday 7 July 2006

1. Denote by X the number of fixed points of a random permutation of
n objects.

Compute E(X), the variance, and E(X3)!

Hint: Use computations with indicator functions!

Solution: Write X =
∑n

i=1 1Ai where Ai is the event that i is a
fixed point.

We have for the probabilities

P (A1) =
1
n

P (A1 ∩A2) =
1

n(n− 1)

P (A1 ∩A2 ∩A3) =
1

n(n− 1)(n− 2)

So we get for the moments

E(X) = nE(1A1) = 1

and

E(X2) = (n2 − n)P (A1 ∩A2) + nP (A1) = 2

So the variance is 1. Finally,

E(X3) = n(n− 1)(n− 2)P (A1 ∩A2 ∩A3) + 3n(n− 1)P (A1 ∩A2) + nP (A1)
= 1 + 3 + 1 = 5

Note the 3n(n− 1) in the second term on the r.h.s. We can check the
prefactors when we realize that n(n− 1)(n− 2) + 3n(n− 1) + n = n3.
This is clear because they account for all possible choices of three
indices between 1 and n.

2. Suppose that A and B are two events with P (A) = 3
4 and P (B) = 1

3 .

Show that always the inequality 1
12 ≤ P (A ∩B) ≤ 1

3 holds

Solution: The r.h.s. is clear by considering B. The l.h.s. can be
seen by

P (A ∩B) = P (A) + P (B)− P (A ∪B) ≥ P (A) + P (B)− 1

substituting the explicit numbers.
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3. Be N a random variable that is distributed according to Poisson with
parameter λ.

a) Compute the exponential moment generating function E(etN ).

Solution: well known from lecture and book, E(etN ) = exp λ(et−1)

b) Now take a sequence of i.i.d. random Normal variables with ex-

pected value µ and variance σ2 and show that E(etXi) = e
t2σ2

2
+tµ

Next we define the random variable S :=
∑N

i=1 Xi, where the random
variables N and Xi are as above.

c) Compute the exponential moment generating function E(etS)!

Solution:

E(etN ) =
∞∑

n=0

P (N = n)E(et
Pn

i=1 Xi)

= e−λ
∞∑

n=0

λn

n!
E(etX1)n

= expλ(e
t2σ2

2
+tµ − 1)

d) Compute E(S) and the variance of S!

Hint for d): Use c)! However, if you don’t like c), you can also avoid
it in the computation

Solution: E(S) = λµ

E(S2) = λ2µ2 + λ(σ2 + µ2)

E(S2)− E(S)2 = λ(σ2 + µ2)

One can avoid part c) in the computation, if you use the formula for
the expected value and variance of a sum with a random number of
terms that was treated in the exercises.

4. Be X an exponential random variable with parameter 1.

(a) Compute the density of log X

Solution: For the distribution function we have P (log X ≤ x) =
1− e−ex

.

Taking derivatives gives the density e−ex
ex.

Be Y another exponential random variable with parameter 1, inde-
pendent of X
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(b) Compute the joint density of the random vector (X, Y
X+Y ).

Hint: Use the multidimensional transformation formula, and note that
Y

X+Y takes values only in the interval [0, 1]

Solution: Put u = x and v = y
x+y . Then the inverse transformation

is given by x = u and y = vu
1−v . The functional determinant is given

by u
(1−v)2

.

So the joint density is

exp(− u

1− v
)

u

(1− v)2

for 0 < u <∞ and 0 < v < 1.

(c) Compute the density of Y
X+Y .

Solution: as we see from (b) by integration over u it is uniform
on the interval [0, 1]. More precisely, the marginal distribution on the
v-variable is obtained by integration over u. Making a substitution
ũ = u

1−v this integral becomes∫ ∞

0
exp(− u

1− v
)

u

(1− v)2
du =

∫ ∞

0
exp(−ũ)ũdũ = 1

That the last integral is 1 can be seen without looking at computations
or tables from the fact that it has become v-independent because the
remaining quantity must be a probability density on [0, 1].

5. Be Xn a sequence of independent geometric random variables with
n-dependent parameter pn = 1− e−n. (We use notations according to
the table in KaDe page 251, meetkundig)

Use the Borel-Cantelli Lemma to show that Xn converges to 0 almost
surely! Is the assumption of independence really necessary to reach
this conclusion?

Solution: That Xn converges to zero almost surely means equiva-
lently that only finitely many non-zeros occur. Now, this is implied
by by the convergence of the series

∞∑
n=1

P (Xn 6= 0) =
∞∑

n=1

(1− pn) =
∞∑

n=1

e−n <∞

For this conclusion we don’t need the independence.
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