Tentamen Kansrekening - Open book

Friday 7 July 2006

1. Denote by X the number of fixed points of a random permutation of n objects.
Compute $E(X)$, the variance, and $E\left(X^{3}\right)$!
Hint: Use computations with indicator functions!
Solution: Write $X=\sum_{i=1}^{n} 1_{A_{i}}$ where A_{i} is the event that i is a fixed point.
We have for the probabilities

$$
\begin{aligned}
& P\left(A_{1}\right)=\frac{1}{n} \\
& P\left(A_{1} \cap A_{2}\right)=\frac{1}{n(n-1)} \\
& P\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{1}{n(n-1)(n-2)}
\end{aligned}
$$

So we get for the moments

$$
E(X)=n E\left(1_{A_{1}}\right)=1
$$

and

$$
E\left(X^{2}\right)=\left(n^{2}-n\right) P\left(A_{1} \cap A_{2}\right)+n P\left(A_{1}\right)=2
$$

So the variance is 1. Finally,

$$
\begin{aligned}
E\left(X^{3}\right) & =n(n-1)(n-2) P\left(A_{1} \cap A_{2} \cap A_{3}\right)+3 n(n-1) P\left(A_{1} \cap A_{2}\right)+n P\left(A_{1}\right) \\
& =1+3+1=5
\end{aligned}
$$

Note the $3 n(n-1)$ in the second term on the r.h.s. We can check the prefactors when we realize that $n(n-1)(n-2)+3 n(n-1)+n=n^{3}$. This is clear because they account for all possible choices of three indices between 1 and n.
2. Suppose that A and B are two events with $P(A)=\frac{3}{4}$ and $P(B)=\frac{1}{3}$.

Show that always the inequality $\frac{1}{12} \leq P(A \cap B) \leq \frac{1}{3}$ holds
Solution: The r.h.s. is clear by considering B. The l.h.s. can be seen by

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B) \geq P(A)+P(B)-1
$$

substituting the explicit numbers.
3. Be N a random variable that is distributed according to Poisson with parameter λ.
a) Compute the exponential moment generating function $E\left(e^{t N}\right)$.

Solution: well known from lecture and book, $E\left(e^{t N}\right)=\exp \lambda\left(e^{t}-1\right)$
b) Now take a sequence of i.i.d. random Normal variables with expected value μ and variance σ^{2} and show that $E\left(e^{t X_{i}}\right)=e^{\frac{t^{2} \sigma^{2}}{2}+t \mu}$

Next we define the random variable $S:=\sum_{i=1}^{N} X_{i}$, where the random variables N and X_{i} are as above.
c) Compute the exponential moment generating function $E\left(e^{t S}\right)$!

Solution:

$$
\begin{aligned}
E\left(e^{t N}\right) & =\sum_{n=0}^{\infty} P(N=n) E\left(e^{t \sum_{i=1}^{n} X_{i}}\right) \\
& =e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} E\left(e^{t X_{1}}\right)^{n} \\
& =\exp \lambda\left(e^{\frac{t^{2} \sigma^{2}}{2}+t \mu}-1\right)
\end{aligned}
$$

d) Compute $E(S)$ and the variance of S !

Hint for d): Use c)! However, if you don't like c), you can also avoid it in the computation
Solution: $E(S)=\lambda \mu$
$E\left(S^{2}\right)=\lambda^{2} \mu^{2}+\lambda\left(\sigma^{2}+\mu^{2}\right)$
$E\left(S^{2}\right)-E(S)^{2}=\lambda\left(\sigma^{2}+\mu^{2}\right)$
One can avoid part c) in the computation, if you use the formula for the expected value and variance of a sum with a random number of terms that was treated in the exercises.
4. Be X an exponential random variable with parameter 1 .
(a) Compute the density of $\log X$

Solution: For the distribution function we have $P(\log X \leq x)=$ $1-e^{-e^{x}}$.
Taking derivatives gives the density $e^{-e^{x}} e^{x}$.
Be Y another exponential random variable with parameter 1, independent of X
(b) Compute the joint density of the random vector $\left(X, \frac{Y}{X+Y}\right)$.

Hint: Use the multidimensional transformation formula, and note that $\frac{Y}{X+Y}$ takes values only in the interval $[0,1]$
Solution: Put $u=x$ and $v=\frac{y}{x+y}$. Then the inverse transformation is given by $x=u$ and $y=\frac{v u}{1-v}$. The functional determinant is given by $\frac{u}{(1-v)^{2}}$.
So the joint density is

$$
\exp \left(-\frac{u}{1-v}\right) \frac{u}{(1-v)^{2}}
$$

for $0<u<\infty$ and $0<v<1$.
(c) Compute the density of $\frac{Y}{X+Y}$.

Solution: as we see from (b) by integration over u it is uniform on the interval $[0,1]$. More precisely, the marginal distribution on the v-variable is obtained by integration over u. Making a substitution $\tilde{u}=\frac{u}{1-v}$ this integral becomes

$$
\int_{0}^{\infty} \exp \left(-\frac{u}{1-v}\right) \frac{u}{(1-v)^{2}} d u=\int_{0}^{\infty} \exp (-\tilde{u}) \tilde{u} d \tilde{u}=1
$$

That the last integral is 1 can be seen without looking at computations or tables from the fact that it has become v-independent because the remaining quantity must be a probability density on $[0,1]$.
5. Be X_{n} a sequence of independent geometric random variables with n-dependent parameter $p_{n}=1-e^{-n}$. (We use notations according to the table in KaDe page 251, meetkundig)

Use the Borel-Cantelli Lemma to show that X_{n} converges to 0 almost surely! Is the assumption of independence really necessary to reach this conclusion?

Solution: That X_{n} converges to zero almost surely means equivalently that only finitely many non-zeros occur. Now, this is implied by by the convergence of the series

$$
\sum_{n=1}^{\infty} P\left(X_{n} \neq 0\right)=\sum_{n=1}^{\infty}\left(1-p_{n}\right)=\sum_{n=1}^{\infty} e^{-n}<\infty
$$

For this conclusion we don't need the independence.

